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Abstract
Happiness has been an overarching goal of mankind at least since Aristotle spoke 
of Eudaimonia. However measuring happiness has been elusive and until now has 
almost exclusively been done by asking survey questions about self-perceived hap-
piness. We propose a novel approach, tracking happiness and stress through changes 
in body signals with a smartwatch, the “Happimeter”. It predicts individual emotions 
from sensor data collected by an Android Wear smartwatch, such as acceleration, 
heartbeat, and activity. The Happimeter was used over three months in the innova-
tion lab of a bank with 22 employees to measure individual happiness, activity, and 
stress. The participants were randomly divided into an experimental and a control 
group of similar size. Both groups wore the watch and entered their subjective hap-
piness, activity and stress levels several times a day. The user-entered ratings were 
then used to train a machine learning system using the sensors of the smartwatch to 
subsequently automatically predict happiness, activity, and stress. The experimen-
tal group received ongoing feedback about their mood and which activity, sensor 
signals, or other people, made them happier or unhappier, while the control group 
did not get any feedback about their predicted and manually entered emotions. Just 
like in quantum physics we observed a “Heisenberg Effect”, where the participants 
made aware of their measurements changed their behavior: Members of the experi-
mental group that received happiness feedback were 16% happier, and 26% more 
active than the control group at the end of the experiment. No effect was observed 
for stress.
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Introduction

Most people think they know when they are happy, sad, or stressed. However, 
emotional awareness is far from given [1]. People are notoriously bad of recog-
nizing when they are sad or stressed. Being aware of one’s own emotions is of 
great help in coping with the challenges of daily life. Fear gets the driver on the 
highway to slam on the brakes when the truck is getting too close, but it can also 
be a powerful inhibitor when there is no reason to be fearful [2]. On the positive 
emotional side, striving for happiness is one of the biggest and most important 
goals of human beings [3]. In general, happiness increases productivity [4], work 
performance [5], career success [6] as well as health and other social factors [6]. 
On the other hand, unhappiness hampers efficiency because employees start act-
ing sloppily [4]. Further, a negative mood can lower expectancy, instrumentality, 
and valence for rewards and thus lead to a worse work performance [7].

But how do we know when we are happy? Previous studies mainly surveyed 
and interviewed individuals in order to access their overall well-being [5, 6, 8]. 
However, all of these approaches suffer from problems of self-assessment and 
cognitive bias [9]. Further, such methods are not only time-consuming and expen-
sive, but they also lack the ability of real-time analysis and actions.

A system is required which automatically tracks the mood of a person at any 
time of the day to circumvent these limitations of surveys and interviews. Thanks 
to the rise of wearable sensor technologies such as smartwatches and wristbands, 
we get access to the most important source of emotional information: the body. 
Not only do smartwatches count the steps and give immediate feedback to the 
wearer on the display, but their built-in sensors access body and context infor-
mation like heart rate, noise, or acceleration. Previous studies have shown that 
machine learning can be used to extract high-level features from body sensors 
that achieve high accuracy in different areas like activity recognition [10] or emo-
tion recognition via an “Emotive Couch” [11]. Further, Blanchflower and Oswald 
[12] showed that physiological information i.e. blood pressure can be used to 
assess well-being. Thus, in this paper we introduce an alternative way to measure 
emotions through machine learning using body sensors from a smartwatch.

To make individuals aware of their emotions and increase their well-being we 
employ a process called “virtual mirroring”. It has been introduced in [13], refer-
ring to a process in which individuals are shown metrics of their own communi-
cation behavior while they are told which communication behavior is desirable. 
In earlier work doing virtual mirroring by analyzing e-mail communication, it has 
been shown that individuals will change their behavior to be more collaborative, 
productive, and innovative [14]. Thus, through virtual mirroring organizations 
can enhance their performance and outcome.

Heisenberg’s uncertainty principle states that two complementing character-
istics, such as location and movement, cannot be determined simultaneously. 
Trying to measure a definite position will make the measurement of the move-
ment less accurate, and vice versa [15]. Gloor [16] has concluded that the same 
applies to humans. When a group of people is observed and if they know this, 
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their self-reflection is triggered which leads to a change in behavior. Furthermore, 
the measurement is not correct anymore due to people’s change in behavior.

Based on these findings, it is therefore desirable to (a) measure and predict hap-
piness, stress, and activity to make individuals aware of their positive or negative 
feelings, and (b) find ways to increase individual well-being.

Related work

Being happy is fundamental for most humans, and in most societies, happiness is 
a highly valued goal [17]. “In all periods in history, and in all countries, a large 
majority of people expresses their desire to live a happy life” [3]. However, it is 
hard to describe the term happiness because there exists a wide variety of definitions 
[18]. Robertson and Cooper [6] describe happiness in terms of physical, social and 
psychological (mental) well-being. Further, the authors allege that the latter con-
sists of two components: First, experiencing positive emotions and a feeling of hap-
piness. Second, experiencing purpose and meaning in what we are doing with our 
lives. Frey and Alois [3] claim that well-being “refers to the satisfaction people gain 
when they reach desired goals”. Moreover, the authors provide different determi-
nants of happiness e.g. income, autonomy, creativity, personal relationships, health, 
to be involved in decision making processes and socio-demographic factors. From 
an organizational research perspective, happiness-related constructs are spread over 
several levels, from transient level to personal level to unit level [19]. At the tran-
sient level, individuals experience happiness as a result of an instantaneous action or 
an event e.g. the enjoyment of a task or the momentary mood at work. The personal 
level characterizes individuals’ happiness in general such that individuals can be dif-
ferentiated from each other e.g. typical mood at work or job satisfaction. The unit 
level describes happiness of groups of individuals such as a team or the organiza-
tion as a whole e.g. covering collective job satisfaction or the group mood. Further, 
Fisher [19] alleges that all these levels not only vary in stability over time but also 
depend on their specific context.

Most studies use self-report questionnaires to measure happiness [6]. One of 
the key instruments is a survey of subjective life-satisfaction which assesses an 
individual’s overall subjective well-being by asking questions such as “Taken 
overall, how satisfied are you with the life you lead on a scale from 0 (totally 
dissatisfied) to 10 (totally satisfied)?” [3]. Another method is the U-Index, which 
measures the time during the day when the individual was in an unpleasant state. 
In contrast to the survey of subjective life satisfaction, this approach has no per-
sonal scale because one’s individual intensity of unpleasantness is not taken into 
account [9]. Other methods, such as the Day Reconstruction Method (DRM) 
[20] or the Experience Sampling Method [3] try to measure emotional aspects 
in moment-to-moment situations. The latter asks individuals randomly and mul-
tiple times a day about their well-being while in DRM each participant needs 
to list their activities of the previous day, including information about the time, 
place and field of activity. To determine the emotions during each activity, par-
ticipants have to select the intensity of predefined emotions on an ordinal scale. 
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Another measurement is the Positive and Negative Affect Schedule [21]. It con-
tains two 10-item scales to measure positive and negative effects. Participants are 
then asked to provide a ranking for each item on a five-point scale of 1 (very 
slightly) to 5 (extremely). Several studies have attempted to elucidate the com-
plex relationship between happiness and work performance using the aforemen-
tioned approaches. The results are various ramifications of happiness, especially 
for businesses.

For example, Amabile et al. [5] concluded that being happy at work is associ-
ated with more creativity and proactivity. The authors conducted a multi-study lon-
gitudinal research program with 222 students. The participation ranged from 9 to 
38 weeks due to individual projects length. Each individual had to answer a demo-
graphic questionnaire in the beginning as well as one questionnaire per day. The 
authors employed the Electronic Event Sampling Methodology [22] which is an 
adaptation of the Experience Sampling Methodology [3].

Further, in [4] 713 individuals were exposed to four different experiments, each 
investigating if happiness is increasing productivity. In their experiments the authors 
used comedy movie clips, chocolate, fruit and drinks as well as talking about trag-
edies in order to make people more or less happy. As expected, the results show 
that happiness is indeed increasing productivity. Other studies confirm these find-
ings e.g. [5, 20]. Amabile and Kramer [23] found that “People do better work when 
they are happy”.

Robertson and Cooper [6] showed that higher levels of well-being are not just 
linked to higher levels of income, better work performance and higher career suc-
cess, but also to higher levels of more successful marriages and friendships and bet-
ter health. The authors used several case studies to underpin their findings, describ-
ing them all would go beyond the scope of this work.

According to Baron et al. [24], happy employees have less interpersonal conflicts. 
This finding was confirmed by two studies. In the first study, 87 students were either 
provoked or not during a business case. Afterwards the participants were exposed to 
one of five treatments: control, gift, self-deprecation, flattery or excessive flattery. 
In a last step, individuals completed a questionnaire about reactions and feelings to 
the negotiation as well as about their happiness. The results show that conflicts may 
sometimes be reduced through happiness triggered by positive incentives such as 
flattery, gift or self-deprecating remarks by an opponent. However, the authors con-
ducted another study to further support the argument. Again, the task was to negoti-
ate a business case but this time, each participant was treated with either humor, 
flattery or nothing (control). Each treatment was presented three times: before, dur-
ing and after the negotiation. In a last step, the students completed a questionnaire 
similar to the one of the first study.

Although all of these cases assessed happiness, they suffer from problems of self-
assessment and cognitive bias [9]. Further, such questionnaire-based methods are 
not only time-consuming and expensive, but they also lack the ability of real-time 
analysis and actions. Often, questionnaire results are enriched by taking into account 
information obtained from interviews with individuals [6], which makes the analysis 
even more time-consuming and expensive. Finally, the results can be unreliable if 
employees fear that the boss will read the questionnaire [25].
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A few studies exist which used the abundance of information collected by wear-
able devices, but they were never tested in a real world, working environment. For 
example, Khan and Lawo [26] collected various physiological information by using 
a pulse sensor and an eHealth platform, including the following sensors: 2D acceler-
ometer, blood pressure, oxygen in the blood, body temperature, airflow, electrocar-
diogram (ECG), electromyography and GSR. While wearing these devices, the 24 
participants were shown 100 images one after another. These images were divided 
into four emotional subgroups, namely: Joy, dislike, sad and stress. After looking 
at five images of the same subgroup, the participants had to choose one emotion 
from the aforementioned emotional states, extended by the terms ‘normal’ and ‘no 
idea’. Subsequently, the authors created models for recognizing different emotional 
states by considering the provided answers from the participants and body sensor 
information.

Nguyen et al. [27] built an application for emotion prediction by using a Mio Link 
Heart Rate Wristband, which was connected to a smartphone by Bluetooth Low 
Energy (BLE). The device collected the heart rate continuously in the background, 
while the five participants recorded their emotions via the application whenever pos-
sible. Nguyen et al. considered six different emotional states including: Fear, anger, 
sadness, disgust, neutral and happiness. Further, they distinguished between three 
different subgroups: negative emotions (fear, anger, disgust, and sadness), neutral 
emotions (neutral) and positive emotions (happiness). They created different feature 
sets by calculating maximum, mean, median as well as discrete wavelet transforma-
tion and Mel-frequency cepstral coefficients (MFCC) from the heart rate.

The most similar work to ours is [25]. The authors used various sensors i.e. accel-
erometer, location, sound-level, infra-red signals, and temperature combined in a 
badge which was worn on the chest. The badges were worn by 468 office workers 
from 10 organizations for 5000 days. They used the Center for Epidemiologic Stud-
ies Depression Scale which asks about typical symptoms of depression to assess 
happiness. Participants had to answer 20 questions by using a four-point scale. The 
authors discovered a correlation between physical motion and collective happiness. 
However, the work is different from ours in three points. First, happiness was meas-
ured on an organizational level rather than on an individual level. Second, happiness 
was measured weekly rather than multiple times a day. Third, instead of using a 
complex questionnaire, we implemented an Experience-based Sampling Method [3] 
with only three questions directly asked to the user on the watch.

Research methodology

The happimeter

The Happimeter [28] is a system for tracking and predicting human’s mood. It pro-
vides feedback to individuals about their mood and what influences it. Our hypoth-
esis to be tested in this experiment is if this feedback will make them actually hap-
pier. The Happimeter uses a smartwatch for collecting the necessary information 
and a website, as well as a phone application for providing detailed insights.
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The smartwatch is the most important component of the system as it is responsi-
ble for collecting the body sensing data. For the experiment described in this paper, 
users were equipped with either a Mobvoi TicWatch S2, a Mobvoi TicWatch E2 
or a Mobvoi Ticwatch S. These watches were running on WearOS. All three kinds 
of watches had the following sensors. First, an accelerometer sensor which meas-
ured the acceleration force in m/s2 on three physical axes, namely: x, y, and z. Thus, 
when the user moved the watch, e.g. shaking or tilting it, an acceleration to one of 
the given axes was caused. Second, a step counter which recorded the number of 
steps since the last sensor measurement. Third, a heart rate sensor which collected 
the heart signals in beats per minute. Fourth, a microphone which recorded the 
noise expressed by the amplitude; and finally, a position sensor which determined 
the user’s location by localizing the longitude, latitude, and altitude. Each sensor 
was running automatically for 30 s every 20 min trying to collect as many measure-
ments as possible. Further, exogenous variables i.e. weather data and time-related 
data were added by the system based on the GPS information provided by the watch.

In order to build a customized individual model for each user, not only the physi-
ological information is necessary but also subjective information about the user’s 
mood to train the system. Thus, a survey is integrated into the Happimeter applica-
tion which asks users approximately every two hours about their activity level, hap-
piness and stress. Simultaneously, this survey is predicting the mood level, provid-
ing the wearers with information about what the system thinks how they feel. Users 
can either confirm or reject and correct the suggested mood. For example, users are 
asked: “Your happiness prediction is 1 of 2. Is this prediction correct?” If not, they 
can enter the correct value on a sliding scale from zero to two, where zero is repre-
senting that the user is not happy, one that the user is happy, and two that the user is 
very happy. The same applies for activity and stress (see Fig. 1 for an illustration).

The predictions are based on a machine learning algorithm which uses the 
user-entered mood and smartwarch sensor data. While new users start with a 
generic model for the prediction, individualized models are trained over time 
based on the feedback of the user. The difference between a generic model and 
an individualized model is that the latter is based on the user’s mood input and 
the former uses the mood input of every user in the system. Note that users can 

Fig. 1  The three different questions asked by the watch. Users can either confirm or deny and correct the 
suggested mood
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enter their sensor and mood data manually in addition to the predictions gener-
ated automatically, further increasing the accuracy of the system.

A second key component of the Happimeter system for conducting virtual mir-
roring is the smartphone application which is available for Android and Apple. 
Although users can also enter their mood data there, the primary purpose of this 
component is to monitor emotions and to manage the social network. Users can 
look at their past survey inputs examining how happy they have been on a specific 
day (see Fig. 2a). Further, users can evaluate their mood input associated with the 
geolocation. They can label specific places like “Home” or “Friends Place”. Such 
a function allows users to accurately analyze how they felt in certain places (see 
Fig. 2b, c).

Furthermore, the app can be used for managing the social network including 
functions such as accepting friend requests, sending friend requests, controlling 
privacy options for mood sharing and unfriend somebody. Users have not only 
access to a friend’s happiness, activity, and stress level but can also be given 
access to the geolocation (see Fig. 2a).

Finally, the application is sending notifications to the user if she or he is not 
happy according to the Happimeter predictions. Based on the system’s prediction 
of happiness, activity, and stress, different notifications are sent. For example, if 

Fig. 2  Illustration of the Happimeter smartphone app. From left to right. a Users have an overview over 
their last survey inputs. For example, on the 24th of June the user has been mostly happy. Further, they 
can see the location and mood of their friends. The big letters are representing the user’s friends. b Users 
can name places where they usually make inputs. c For each place they receive detailed information such 
as the average of their happiness, activity, and stress
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the system predicts that the user is very unhappy, very active and very stressed, it 
suggests taking a long nap. The default interventions are shown in Fig. 10.

The last component of the Happimeter system is the website. It can be used for 
reviewing the collected measures and mood inputs. On the dashboard users can see 
their mood inputs over the last 30 days (see Fig. 11), as well as the system’s pre-
diction based on the user’s last sensor data. Another function is to provide insights 
about the driver of a user’s mood. Users can see what variables influence their mood 
the most (see Fig. 12). Further, they can see by whom they are influenced and on 
whom they exert influence (see Fig. 13). Moreover, the website can be utilized for 
modifying the default interventions such that each user can incorporate individual 
notifications. Finally, a user can create a team consisting of multiple users. For each 
team the mood inputs are aggregated, the average is calculated, and the information 
is displayed on the website.

Experimental setup

A real-world experiment was conducted with 22 full-time employees of the Sparkas-
sen Innovation Hub (S-Hub) in Hamburg, Germany from May 1, 2019 to August 19, 
2019. Due to allergic reactions with the strap, four employees aborted the experi-
ment prematurely after one month leading to 18 remaining participants, of whom 
16 (88.89%) were male and 2 (11.11%) female. Every participant was equipped with 
a smartwatch at the beginning of the experiment. After setting up the watches each 
participant was given a few days to get used to the system. Furthermore, this time 
was necessary to replace the generic happiness prediction models with individual-
ized ones.

To verify the reliability of happiness, activity, and stress prediction, one model 
was created for each question for each user. Sensor data of each participant was col-
lected approximately every twenty minutes during working hours. Note that some-
times the participants forgot to wear their watches or the sensors failed to record 
any information because of hardware or software issues. Further, the watch was 
asking participants approximately every two hours about their happiness, activity, 
and stress. Both sensor and mood data were used to create models by using differ-
ent machine learning algorithms i.e. Decision tree, gradient boosting with decision 
trees, random forest, support vector machine (SVM), feedforward neural network 
and long short-term memory (LSTM) models. Due to the availability of user-entered 
information about the user’s mood, the algorithms could easily be evaluated by com-
paring real mood values and predicted mood values.

To explore if feedback and recommendations affect happiness, stress and activ-
ity—i.e. the Heisenberg effect through virtual mirroring indeed exists—the partici-
pants were equally divided into two groups, a control group and an experimental 
group. The latter had access to all functionalities mentioned above. Members of the 
experimental group received recommendations, based on their predictions. These 
recommendations were sent approximately every three hours during business hours. 
Further, they had insights about their drivers, past mood inputs and geolocations, 
as well as they could use the social network functionalities. In contrast, the control 
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group had none of the Happimeter functionalities. Users were just asked to wear 
the watches to provide sensor data and to answer the questions to provide mood 
data. Their access to the website was denied. Functionalities in the application on 
the phone were restricted such that participants could not see their last mood inputs. 
Further, when asking about the mood the watch did not provide any predictions. 
Instead members of the control group were only asked about their happiness, activ-
ity and stress levels (see Fig. 3 for an illustration).

Feature selection

Feature selection is crucial in machine learning, as it can have a significant impact 
on the outcome of the algorithms. In this paper recursive feature elimination (RFE) 
[29] was used to create a feature set. In RFE, the classifier is first trained with all 
features. Next, the least important feature is removed. That procedure is repeated 
until a single feature is left. The best feature set is the one that achieves the highest 
accuracy. For the creation of the final feature set, a decision tree was used as an esti-
mator. This algorithm can return the feature importance of each feature, which, in 
turn, can be used for determining the best features.

RFE was applied on all available features including the nine features which 
resulted from the five sensors of the Mobvoi smartwatches described above, plus 

Fig. 3  Comparison of control and experimental group. While the experimental group had access to all of 
the Happimeter’s feature like receiving mood predictions, receiving interventions and monitoring emo-
tions, members of the control group did not have access to any functionalities except for receiving ques-
tions about mood and collecting sensor data
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weather information, i.e. temperature, humidity, pressure, wind, clouds, and weather, 
as well as time-related information, i.e. hour, weekday and session. The latter deter-
mined the part of the day.The best feature set using RFE based on a decision tree is 
presented in Table 1.

One model was built for each question for each user, i.e., each user had three 
different models: One for predicting happiness, one for predicting activity, and one 
for predicting stress. In order to build these models, it was necessary to apply some 
preprocessing steps. These steps are explained in the following.

To create the training and testing instances, each mood data entry was combined 
with one instance of sensor data, by searching for the closest timestamp in the sensor 
data that matched the mood data. Unfortunately, a match could not always be found 
between mood and sensor data, and thus, some information could not be considered 
while fitting the models. The answers for the different questions were used as labels.

During the preprocessing step, those columns, which either had more ‘not-a-
number’ (nan) values than numerical values or where the standard deviation of the 
column was zero, were dropped. Remaining nan values in columns which had not 
been dropped were replaced with the mean of the respective column. Further, one 
weather variable had to be encoded such that the values were numerical. To cope 
with the imbalanced dataset, cost-sensitive learning [29] was taken into account 
when building the models. Additionally, tenfold cross-validation with stratification 
was used when evaluating the generalization performance of each algorithm.

Performance measures

Different performance metrics, i.e. accuracy, F1-score and a combination of both 
were calculated based on the different feature-sets, periods and questions to evaluate 
and compare each algorithm. Although accuracy is a common evaluation metric, in 
this case it might not be a good indicator because when the class distribution in a 
dataset is skewed, the accuracy can be very high which leads to the assumption that 
the model is doing well [30]. The F1-score, a combination of precision1 and recall2 

Table 1  Best feature set using 
RFE Method Sensor

Minimum, maximum Heart rate, microphone
Average Accelerometer X, accel-

erometer Y, acceler-
ometer Z, heartrate, 
microphone

Magnitude Number of steps, 
temperature, humidity, 
pressure, hour, week-
day, session

1 true positives

true positives+false positives
 [29].

2 true positives

true positives+false negatives
 [29].
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was used for evaluating the model to overcome the drawback of accuracy. Math-
ematically, it is expressed as:

Finally, to compare different models, a single number metric was necessary, 
which takes into account accuracy and F1-score equally. Without such a metric, 
one model could be superior w.r.t accuracy while another could be superior w.r.t 
F1-score. The combination was simply the mean of both metrics:

The metrics were calculated for all three models of each user. However, for the 
final evaluation, the various performances of each user were summarized, and the 
average was taken.

It was necessary to build a baseline against which the models’ performance could 
be compared to infer the meaning of these metrics. Such a baseline can evince per-
formance improvements while pointing out superior algorithms. Due to the highly 
imbalanced dataset it was reasonable to use a majority classifier, also called zeroR, 
as a baseline classifier. It is a naïve classifier that always predicts the most frequent 
class in the training set [30]. In the bottom line all the learned models should at least 
outperform the majority classifier.

Data analysis and results

Evaluate prediction

In total, 10,830 sensor data items were recorded during the experiment. 4845 sensor 
data items were collected by the experimental group, and 5985 sensor data items 
were collected by the control group.

In contrast to the sensor data, the mood data was manually entered by the user. As 
already described above, users were asked about their happiness, stress, and activity. 
The answers along with the question id and other information such as timestamp, 
longitude, and latitude were sent to the server. In total 6844 mood data entries were 
recorded, 2123 happiness answers, 2126 activity answers and 2115 stress answers. 
4034 mood data records were collected by the experimental group, and 2810 mood 
data records were collected by the control group. Note that the answers, given by 
the users, were imbalanced such that most of the users stated that they had been 
active, happy and stressed. The answers’ ratios for activity, happiness, and stress 
were 341:1191:594, 192:1325:606, 811:1122:182, respectively.

Table  2 shows the key performances of each algorithm for predicting activ-
ity. The random forest was most accurate. Its combined value of 76.12% was 
14,25% higher than the baseline performance as mentioned in section  2.4 and 
1.72% higher than the combined value of the second-best algorithm, namely, 

(1)2 ×
precision × recall

precision + recall

(2)Accuracy + F1

2
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gradient boosting. While the F1-score of random forest and gradient boosting was 
almost the same, they differed in the achieved accuracy. Here, the latter was out-
performed by 3.31%. Decision tree, FFNN, and LSTM performed worst, and they 
were mere slightly above the baseline performance.

Table  3 lists the best performance metrics of each algorithm for predicting 
happiness. Again, random forest performed the best. Its combined value with 
87.30% was superior to the combined value of the baseline majority classifier by 
7.84%. Although the accuracy of the baseline performance was already very high, 
the random forest outperformed it with 5.55%. Gradient boosting was barely infe-
rior of random forest. The deep learning algorithms performed worst. Both algo-
rithms achieved a combined value even worse than the combined value of the 
baseline performance.

Table 4 lists the performance metrics of each algorithm for predicting stress. 
Here, SVM was the best algorithm. This classifier was exceeding the baseline 
performance by 9.97% w.r.t the combined value. Interestingly, SVM’s F1-score 
was worse than most other algorithms. However, its accuracy was outperform-
ing the accuracy of the other algorithms and thus, in sum its performance was 
slightly superior. However, gradient boosting, random forest, decision tree, and 

Table 2  Performance metrics 
of each algorithm for predicting 
activity

The best metrics are written in bold

Activity

Accuracy (%) F1-score (%) Combination (%)

Baseline 67.75 55.99 61.87
Decision tree 68.54 66.75 67.65
Gradient boosting 75.78 73.02 74.40
Random forest 79.06 73.18 76.12
SVM 77.42 69.79 73.60
FFNN 68.07 68.07 68.07
LSTM 69.57 68.97 69.27

Table 3  Performance metrics 
of each algorithm for predicting 
happiness

The best metrics are written in bold

Happiness

Accuracy (%) F1-score (%) Combination (%)

Baseline 82.87 76.04 79.46
Decision tree 83.54 82.85 83.20
Gradient boosting 87.42 85.13 86.27
Random forest 88.42 86.18 87.30
SVM 87.42 82.37 84.89
FFNN 64.74 64.74 64.74
LSTM 49.45 47.91 48.68
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FFNN just performed slightly worse than the SVM. The second worst algo-
rithm—ignoring the baseline—was the FFNN which achieved a combined value 
of 66,11%. The difference in the combined value makes clear how close the 
algorithms were to each other: The FFNN was excelled by merely 2.6%.

Evaluating Heisenberg’s e!ect

To investigate whether receiving feedback about what drives one’s dissatisfac-
tion, and suggestions about how to improve it will increase employee happiness, 
the average happiness of experimental and control group was calculated. The 
assumption was that feedback is making the user more conscious of his/her feel-
ings while the recommendations should actively help the user to become happier 
and more satisfied. Consequently, happiness should be higher in the experimen-
tal group than in the control group. Although some of the participants had worn 
the watches outside of working hours, only business days from 4 am to 10 pm 
were included in this analysis, leaving 6364 mood data entries.

Table 4  Performance metrics of each algorithm for predicting stress

The best metrics are written in bold

Stress

Accuracy (%) F1-score (%) Combination (%)

Baseline 65.10 52.39 58.74
Decision Tree 67.41 66.51 66.96
Gradient Boosting 70.45 66.85 68.65
Random Forest 70.09 66.46 68.28
SVM 73.94 63.47 68.71
FFNN 66.11 66.11 66.11
LSTM 54.19 52.09 53.14

Table 5  Happiness comparison between experimental (N = 9) and control group (N = 9)
Average 
happi-
ness

Shap-
iro–Wilk 
(p-value)

Mann 
Whitney U 
(p-value)

Number of 
observa-
tions

Standard 
devia-
tion

Minimum Maximum

Self-reported
 Experimen-

tal group
1.26 1.17e−41 5.30e−09 1218 0.54 0 2

 Control 
group

1.10 2.53e-33 905 0.62 0 2

Predicted
 Experimen-

tal group
1.29 0 0 89,684 0.57 0 2

 Control 
group

1.13 0 87,084 0.62 0 2
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Happiness

Table  5 resumes the differences in happiness between experimental and con-
trol group, with happiness values both manually entered, and predicted by the 
machine learning system. We find that, indeed as hypothesized, the experimen-
tal group, which had been getting detailed happiness feedback on watch, phone 
app, and website, shows 15% higher happiness. This means the virtual mirroring 
seems to work, and getting happiness feedback will indeed increase happiness.

Figure 4 showing the average happiness per business hour, illustrates this find-
ing. The experimental group was always happier than the control group with one 
exception: At 8 pm the control group was slightly happier than the experimental 
group. Note that this illustration looks more skewed because, at very early or late 
business hours, the number of employees making a mood input was significantly 
smaller than during the day. This made the happiness average more dependent on 
outliers among individuals rather than on the entire group.

Figure  5 illustrates happiness averaged over days and weeks, supporting the 
hypothesis too. Both graphics underline that on average the experimental group 
was happier than the control group. Further, two other characteristics are conspic-
uous. First, the control group experienced a happiness low on August 2nd, August 
6th, and August 8th (see also the week from 5 to 9 August). Second, in the last 
week of the observation, the average happiness in both groups increased rapidly.

Activity

A similar picture emerges for activity (Table 6). Again, average activity over the 
total observation period in the experimental group was 0.26 higher than in the 
control group (1.23 and 0.97, respectively).

Figure 6 illustrates how the activity changed during the business hours for both 
groups. The experimental group was always more active than the control group. 
Both groups experienced an activity low at the end of the day.

Figure 7 compares the average activity of both groups in different temporal per-
spectives. Again, the results support the hypothesis since, in both graphics, the 

Fig. 4  Self-reported happiness per business hour
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experimental group was more active than the control group. Only between July 8th 
and July 17th the control group was more active. Further, at the end of the experi-
ment, the experimental group was much more active on average than the control 
group.

Fig. 5  Comparison of average self-reported happiness over time. a Average happiness per day. b Average 
happiness per week

Table 6  Activity comparison between experimental (N = 9) and control group (N = 9)
Average 
activity

Shap-
iro–Wilk 
(p-value)

Mann 
Whitney U 
(p-value)

Number of 
observa-
tions

Standard 
devia-
tion

Minimum Maximum

Self-
reported

 Experi-
mental 
group

1.23 9.05e−40 2.05e−18 1219 0.58 0 2

 Control 
group

0.97 1.87e−31 907 0.71 0 2

Predicted
 Experi-

mental 
group

1.14 0 0 89,681 0.49 0 2

 Control 
group

0.95 0 87,085 0.63 0 2
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Stress

Finally, the stress average over the total observation time was calculated for both 
groups. While the experimental group obtained an average stress value of 0.69, 
the control group achieved an average stress value of 0.72. Although users of the 
control group experienced more stress than the users of the experimental group, 
the difference was not significant (Table 7).

Fig. 6  Self-reported activity per business hour

Fig. 7  Comparison in average self-reported activity over time. a Average activity per day. b Average 
activity per week
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As Fig. 8 illustrates, the stress levels of the control group and the experimental 
group were running mostly in parallel during business hours. Again, in this illus-
tration, the differences between the experimental and control group look more 
extreme. However, not all users reported stress values at every business hour. 
Thus, the stress average could have been dependent on individual persons rather 
than on the entire group.

Figure  9a and b show more clearly that the stress curves of both groups were 
approximately the same. Figure 9a shows the change of stress over the days of the 
entire observation period. It can be seen that sometimes, the stress in the experimen-
tal group was higher than in the control group and vice versa. Figure 9b shows the 
change of stress over the weeks of the entire observation period. This graph clearly 
shows how little the two groups differed from each other.

Table 7  Stress comparison between experimental (N = 9) and control group (N = 9)
Average 
stress

Shap-
iro–Wilk 
(p-value)

Mann 
whitney U 
(p-value)

Number of 
observa-
tions

Standard 
devia-
tion

Minimum Maximum

Self-
reported

 Experi-
mental 
group

0.69 7.62e−40 0.66 1213 0.58 0 2

 Control 
group

0.72 3.11e−33 902 0.66 0 2

Predicted
 Experi-

mental 
group

0.67 0 0 89,779 0.60 0 2

 Control 
group

0.75 0 87,173 0.60 0 2

Fig. 8  Average stress during business hours
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Discussion

In this research, a smartwatch-based system was introduced, which used physiologi-
cal information, such as heart rate or ambient noise, exogenous variables such as 
weather, and machine learning algorithms, to reliably predict people’s satisfaction 
in terms of happiness, activity, and stress. Moreover, it was shown, that predictions, 
made by the system, can be used to provide feedback and recommendation, which, 
in turn, can increase satisfaction by increasing happiness and activity.

The results of this work demonstrate practical implications of such a system for 
managers. It was shown that sensor-based systems reliable predict happiness, activ-
ity, and stress. This information can be used to make employees more satisfied with 
their job due to different factors. First, managers can use our approach to make 
employees happier and more active either by mirroring back to people what makes 
them happy and active like we did in the experiment or by observing the employ-
ees and recommending interventions for increasing personal satisfaction. The same 
approach can also be used to make the employees less stressed. Ultimately, such a 
working environment, were everybody is aware of what makes them happy, active 
and less stressed, will increase productivity and foster organizational benefits. Addi-
tionally, companies can get rid of surveys and time-consuming interviews by using 
an automated system like the one described in this paper which can predict employee 

Fig. 9  Comparison in average self-reported stress over time. a Average stress per day. b Average stress 
per week
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satisfaction automatically. This not only saves money but also enables real-time sat-
isfaction tracking. Nevertheless, companies need to be aware of the sensibility of the 
data. They not only have to ensure data security and privacy, but they also must be 
careful not to misuse the information in any, for the employees, harmful way.

It seems that physiological information as well as weather- and time-related infor-
mation can be used to assess human’s mood. Further, Heisenberg’s uncertainty prin-
ciple and virtual mirroring might be used to change the behavior of individuals by 
triggering their self-reflection. Note that the participants were neither forced to read 
the feedback nor to actively put the interventions into practice. No mechanism was 
implemented to control how the users perceived the recommendations. Participants 
in our experiment were enthusiastic about our system, but the question remains how 
other, more conservative companies might be encouraged to use similar systems.

There are some weaknesses of the current study. First, it might be that the partici-
pants of the control group were less happy and less active than the participants of the 
experimental group only because they did not receive any feedback and recommenda-
tion. It might be that the participants of the control group felt inferior because of such an 
experimental set up, which led to more unhappiness and inactivity. However, we assume 
that this would overrate the influence of our Happimeter system, as the work in the office 
should be the focus and key influence on employee satisfaction. Second, the number of 
participants was limited. More attendees would have reinforced the significance of the 
result. Further, the number of male participants was higher than the number of female 
participants. Thus, other experiments, with better gender balance, are needed in order to 
further verifiy the relationship between physiological information and activity, happiness 
and stress across all genders. Finally, the system did not operate perfectly. Some infor-
mation got lost because of hardware malfunction or software issues.

In future work, the Happimeter system should be implemented in other compa-
nies and with more participants. The system should be further developed to reli-
ably predict happiness, activity, and stress. Maybe, the system could also be put in 
another context such as using physiological information to predict whether some-
body is going to buy a car or not. Also, it would be interesting to see how another 
smartwatch and thus, other sensors, could be used in combination with the system.
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Fig. 10  Default suggestions for increasing happiness based on low stress, activation, happiness levels

Appendix

See Figs. 10, 11, 12, 13.
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Fig. 11  Overview of last mood inputs on the website. The white lines represent the individual values 
manually entered by the user, and the grey line represents the average of all users in the system
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Fig. 12  Website showing drivers of activity, happiness, and stress
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Fig. 13  Website shwing who is influencing the mood of a person
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